### 6.006- Introduction to Algorithms



Lecture 10
Prof. Constantinos Daskalakis
CLRS 8.1-8.4

## Menu

- Show that $\Theta(n \lg n)$ is the best possible running time for a sorting algorithm.
- Design an algorithm that sorts in $\Theta(n)$ time.
- Hint: maybe the models are different ?


## Comparison sort

All the sorting algorithms we have seen so far are comparison sorts: only use comparisons to determine the relative order of elements.

- E.g., merge sort, heapsort.

The best running time that we've seen for comparison sorting is $O(n \lg n)$.

$$
\text { Is } O(n \lg n) \text { the best we can do? }
$$

Decision trees can help us answer this question.

## Decision-tree

A recipe for sorting $n$ numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$

- Nodes are suggested comparisons:
$i: j$ means
compare $a_{i}$ to $a_{j}$, for $i, j \in\{1,2, \ldots, n\}$.

- Branching direction depends on outcome of comparisons.
- Leaves are labeled with permutations corresponding to the outcome of the sorting.


## Decision-tree example

$$
\begin{aligned}
& \text { Sort }\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
& =\langle 9,4,6\rangle \text { : }
\end{aligned}
$$



Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.


## Decision-tree example

> Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ $=\langle 9,4,6\rangle:$


Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.


## Decision-tree example

> Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ $=\langle 9,4,6\rangle:$


Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.


## Decision-tree example

Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ $=\langle 9,4,6\rangle$ :


Each leaf contains a permutation $\langle\pi(1), \pi(2), \ldots, \pi(n)\rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(\mathrm{n})}$ has been established.

## Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size $n$.
- A path from the root to the leaves of the tree represents a trace of comparisons that the algorithm may perform.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time $=$ height of tree.


## Lower bound for decisiontree sorting

Theorem. Any decision tree that can sort $n$ elements must have height $\Omega(n \lg n)$.
Proof. (Hint: how many leaves are there?)

- The tree must contain $\geq n$ ! leaves, since there are $n$ ! possible permutations
- A height- $h$ binary tree has $\leq 2^{h}$ leaves
- Thus $2^{h} \geq n$ !
$h \geq \lg (n!) \quad$ ( $\lg$ is mono. increasing)
$\geq \lg \left((n / e)^{n}\right) \quad$ (Stirling's formula)
$=n \lg n-n \lg e$
$=\Omega(n \lg n)$.


## Sorting in linear time

Counting sort: No comparisons between elements.

- Input: $A[1 \ldots n]$, where $A[j] \in\{1,2, \ldots, k\}$.
- Output: $B[1 \ldots n]$, a sorted permutation of $A$
- Auxiliary storage: $C[1 \ldots k]$.


## Counting sort

for $i \leftarrow 1$ to $k$
do $C[i] \leftarrow 0$
for $j \leftarrow 1$ to $n$
do $C[A[j]] \leftarrow C[A[j]]+1$
] store in $C$ the frequencies of

- the different keys in $A$
i.e. $C[i]=|\{k e y=i\}|$
for $i \leftarrow 2$ to $k$
do $C[i] \leftarrow C[i]+C[i-1]$
] now $C$ contains the cumulative
- frequencies of different keys in
$\int A$, i.e. $C[i]=|\{k e y \leq i\}|$
for $j \leftarrow n$ downto 1
do $B[C[A[j]]] \leftarrow \mathrm{A}[j]$ $C[A[j]] \leftarrow C[A[j]]-1]$
using cumulative frequencies build sorted permutation


## Counting-sort example

 one index for each possible key stored in A
$B$ :


## Loop 1: initialization



B:

for $i \leftarrow 1$ to $k$
do $C[i] \leftarrow 0$

## Loop 2: count frequencies


$B$ :

for $j \leftarrow 1$ to $n$
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

## Loop 2: count frequencies


$B$ :

for $j \leftarrow 1$ to $n$ do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

## Loop 2: count frequencies


$B$ :

for $j \leftarrow 1$ to $n$ do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

## Loop 2: count frequencies


$B$ :

for $j \leftarrow 1$ to $n$
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

## Loop 2: count frequencies


$B$ :

for $j \leftarrow 1$ to $n$
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

## Loop 2: count frequencies


$B$ :

for $j \leftarrow 1$ to $n$
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

## [A parenthesis: a quick finish


$B$ :


Walk through frequency array an place the appropriate number of each key in output array...

## A parenthesis: a quick finish



## A parenthesis: a quick finish



## A parenthesis: a quick finish


$B$ :


## A parenthesis: a quick finish



B is sorted!
but it is not "stably sorted"...]

## Loop 2: count frequencies


$B$ :

for $j \leftarrow 1$ to $n$
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

## Loop 3: cumulative frequencies


$B$ :

for $i \leftarrow 2$ to $k$
do $C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{$ key $\leq i\} \mid$

## Loop 3: cumulative frequencies


$B$ :

for $i \leftarrow 2$ to $k$
do $C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{$ key $\leq i\} \mid$

## Loop 3: cumulative frequencies


$B$ :

for $i \leftarrow 2$ to $k$
do $C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{$ key $\leq i\} \mid$

## Loop 4: permute elements of A


$B$ :

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \mathbf{d o} B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


$B$ :


There are exactly 3 elements $\leq A[5]$; so where should I place A[5]?
for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A



Used-up one 3; update counter.
for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


$B$ :

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A



There are exactly 5 elements $\leq A[4]$, so where should I place A[4]?
for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


$B$ :

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


$B$ :

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


$B$ :


## 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


$B$ :


## 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A



B:


## 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A



B:


## 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Loop 4: permute elements of A


for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

## Analysis

$$
\begin{array}{l||l}
\Theta(k) & \text { for } i \leftarrow 1 \text { to } k \\
& \text { do } C[i] \leftarrow 0 \\
\Theta(n) & \text { for } j \leftarrow 1 \text { to } n \\
& \quad \text { do } C[A[j]] \leftarrow C[A[j]]+1 \\
\Theta(k) & \text { for } i \leftarrow 2 \text { to } k \\
& \text { do } C[i] \leftarrow C[i]+C[i-1] \\
& \text { for } j \leftarrow n \text { downto } 1 \\
\Theta(n) & \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& C[A[j] \leftarrow \leftarrow C[A[j]]-1
\end{array}
$$

## Running time

If $k=O(n)$, then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- Comparison sorting takes $\Omega(n \lg n)$ time.
- Counting sort is not a comparison sort.
- In fact, not a single comparison between elements occurs!


## Stable sorting

Counting sort is a stable sort: it preserves the input order among equal elements.


## Radix sort

- Origin: Herman Hollerith's card-sorting machine for the 1890 U.S. Census. (See Appendix (10).)
- Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on mostsignificant digit first.
- Good idea: Sort on least-significant digit first with auxiliary stable sort.


## Operation of radix sort

| 329 | 720 | 720 | 329 |
| ---: | ---: | ---: | ---: |
| 457 | 355 | 329 | 355 |
| 657 | 436 | 436 | 436 |
| 839 | 457 | 839 | 457 |
| 436 | 657 | 355 | 657 |
| 720 | 329 | 457 | 720 |
| 355 | 839 | 657 | 839 |

## Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit $t$



## Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit $t$
- Two numbers that differ in digit $t$ are correctly sorted.



## Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit $t$
- Two numbers that differ in digit $t$ are correctly sorted.
- Two numbers equal in digit $t$ are put in the same order as the input $\Rightarrow$ correct order.



## Runtime Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort $n$ computer words of $b$ bits each.
- Each word can be viewed as having $b / r$ base- $2^{r}$ digits.

Example: 32-bit word

- If each $b$-bit word is broken into $r$-bit pieces, each pass of counting sort takes $\Theta\left(n+2^{r}\right)$ time.
- Setting $r=\log n$ gives $\Theta(n)$ time per pass, or $\Theta(n b / \log n)$ total

